Back to tutorials

PLC Programming Fundamentals – OTL Instruction

Vladimir Romanov
June 15, 2020
Table of Contents

Introduction of Output Latch

The OTL, also known as the Output Latch, instruction will force a single bit of logic into a high state if all the conditions leading to it are true. It’s a basic instruction which is powerful but can cause programmers a lot of grief if used improperly or too frequently. This instruction is found on the right side of a ladder logic rung and will switch a bit to a HIGH state once it executes. Unlike the OTE Instruction, the OTL will never turn the bit LOW. In order to make that happen, you can leverage other instructions which accomplish exactly that. That being said, the most common pairing with an OTL is an OTU (Output Unlatch).

What is the purpose of the Output Latch?

In PLC programming, an output is tied to an electrical device that most often performs a mechanical action. A few examples of such devices include motor starters, relays, valves, solenoids and lights. The purpose of energizing an output is to toggle between the two states of the device tied to this output. In other words, energizing a motor coil may start the motor. Similarly, energizing a valve will toggle the state and open or close the valve depending on the initial state.

The latch portion comes into play when the output must be energized for an extended duration. In other words, once the conditions are met for the output to be energized, an output latch instruction will set the output to HIGH until it is unlatched. The rung in which this instruction is used will not be monitored until a separate condition unlatches the output through the use of an OTU instruction.

Example & Usage of OTL

Here’s a real-world scenario of an OTL instruction:

  1. A Micrologix 1100 Allen Bradley PLC is used to control a process.
  2. A motor contactor is connected to Output 0 (O:o/o of the PLC).
  3. A normally open push button (“System Start”) is connected to Input 0 (I:0/0 of the PLC).
  4. An operator presses the start button.
  5. The XIC instruction is tied to I:0/0.
  6. The OTL instruction is tied to O:0/o.
  7. The OTL instruction energizes the output (O:0/0) while the XIC is TRUE.
  8. The output (O:0/0) remains HIGH when the XIC is released.

Programming example in RSLogix 500:

OTL Output Latch Instruction RSLogix 500

The OTL instruction will energize the output of the PLC which will allow the motor tied to the starter to run. The bit which was energized by the OTL instruction will remain energized after the release of the start button or any other condition tied to the input of the OTL.

Data Types Allowed for OTL

The OTL instruction will work with the following data types within the RSLogix 500 environment:

  • Boolean – The OTL may only set TRUE or 1 or HIGH.

Important Notes

  • Note 1 – The OTL instruction was initially used to set the status of miscellaneous outputs landed on the PLC. However, it may be used on any boolean within the program. In other words, it can energize any boolean within the program. Through this property, programmers can utilize the OTL instruction for a wide range of applications.
  • Note 2 – Although it may seem like a good idea to introduce OTL and OTU instructions for every bit, there’s a catch. Depending on how the code is executed, you may run into scenarios where the logic will depend on the position of your rungs within the program. Avoid using OTL & OTU instructions unless absolutely necessary for the application.

Video Tutorial

Back to tutorials

Related Tutorials


HMI Software - Different Tools, Applications and Solutions to Meet Your Needs

HMI Software is commonly referred to as the development application that will be used to create the runtime application for an HMI terminal. It’s important to understand this distinction as we will be going over the HMI development environments used by PLC and HMI programmers to create the screens rather than the end-user applications you will see at the plant level.Numerous HMI programming software solutions are found on the market. Although they aim to achieve the same result, different packages have a distinct advantage over others in terms of price, reliability, ease-of-use and technical capability. It is therefore possible to find the right solution that will fit your specific application if you spend the time to research all options.

September 25, 2020
Vladimir Romanov

PLC Programming Example Project - Batching Tank Ladder Logic PLC and HMI Tutorial

Generally speaking, there are two types of processes in manufacturing: discrete and analog. A discrete process is a manufacturing methodology that will produce separate widgets. In other words, a production line may output one item, two items, three items, etc. An analog production process is where the plant will create a quantity of product that is quantifiable by weight. Examples include the production of beverages, sauces, raw ingredients, etc. Although it is possible to design a flow that will continuously output the product, such production is often managed in batches. It is important to note that although batches are considered to be analog or continuous flow, most of them end up being packaged for consumption which converts them into a discrete manufacturing process.

September 14, 2020
Vladimir Romanov
PLC Programming Career

PLC Programming Certification - Complete Guide

You may choose to pursue a traditional college degree, learn through online tutorials, or take a course that will issue a plc programming certification upon completion. However, what is the best option, and what are the best PLC programming certifications?

August 6, 2020
Vladimir Romanov